Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 6, 2025
-
We propose a method to teach multiple large language models (LLM) to collaborate by interleaving their generations at the token level. We model the decision of which LLM generates the next token as a latent variable. By optimizing the marginal likelihood of a training set under our latent variable model, the base LLM automatically learns when to generate itself and when to call on one of the “assistant” language models to generate, all without direct supervision. Token-level collaboration during decoding allows for a fusion of each model’s expertise in a manner tailored to the specific task at hand. Our collaborative decoding is especially useful in cross-domain settings where a generalist base LLM learns to invoke domain ex- pert models. On instruction-following, domain- specific QA, and reasoning tasks, we show that the performance of the joint system exceeds that of the individual models. Through qualitative analysis of the learned latent decisions, we show models trained with our method exhibit several interesting collaboration patterns, e.g., template-filling.more » « less
-
Abstract ObjectiveLeverage electronic health record (EHR) audit logs to develop a machine learning (ML) model that predicts which notes a clinician wants to review when seeing oncology patients. Materials and MethodsWe trained logistic regression models using note metadata and a Term Frequency Inverse Document Frequency (TF-IDF) text representation. We evaluated performance with precision, recall, F1, AUC, and a clinical qualitative assessment. ResultsThe metadata only model achieved an AUC 0.930 and the metadata and TF-IDF model an AUC 0.937. Qualitative assessment revealed a need for better text representation and to further customize predictions for the user. DiscussionOur model effectively surfaces the top 10 notes a clinician wants to review when seeing an oncology patient. Further studies can characterize different types of clinician users and better tailor the task for different care settings. ConclusionEHR audit logs can provide important relevance data for training ML models that assist with note-writing in the oncology setting.more » « less
-
Expert decision makers are starting to rely on data-driven automated agents to assist them with various tasks. For this collaboration to perform properly, the human decision maker must have a mental model of when and when not to rely on the agent. In this work, we aim to ensure that human decision makers learn a valid mental model of the agent's strengths and weaknesses. To accomplish this goal, we propose an exemplar-based teaching strategy where humans solve a set of selected examples and with our help generalize from them to the domain. We present a novel parameterization of the human's mental model of the AI that applies a nearest neighbor rule in local regions surrounding the teaching examples. Using this model, we derive a near-optimal strategy for selecting a representative teaching set. We validate the benefits of our teaching strategy on a multi-hop question answering task with an interpretable AI model using crowd workers. We find that when workers draw the right lessons from the teaching stage, their task performance improves. We furthermore validate our method on a set of synthetic experiments.more » « less
-
Conceptualizing Machine Learning for Dynamic Information Retrieval of Electronic Health Record NotesThe large amount of time clinicians spend sifting through patient notes and documenting in electronic health records (EHRs) is a leading cause of clinician burnout. By proactively and dynamically retrieving relevant notes during the documentation process, we can reduce the effort required to find relevant patient history. In this work, we conceptualize the use of EHR audit logs for machine learning as a source of supervision of note relevance in a specific clinical context, at a particular point in time. Our evaluation focuses on the dynamic retrieval in the emergency department, a high acuity setting with unique patterns of information retrieval and note writing. We show that our methods can achieve an AUC of 0.963 for predicting which notes will be read in an individual note writing session. We additionally conduct a user study with several clinicians and find that our framework can help clinicians retrieve relevant information more efficiently. Demonstrating that our framework and methods can perform well in this demanding setting is a promising proof of concept that they will translate to other clinical settings and data modalities (e.g., labs, medications, imaging).more » « less
An official website of the United States government

Full Text Available